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Abstract

The development of high-throughput sequencing technologies is dramatically

increasing the use of single nucleotide polymorphisms (SNPs) across the field of

genetics, but most parentage studies of wild populations still rely on microsatellites.

We developed a bioinformatic pipeline for identifying SNP panels that are informa-

tive for parentage analysis from restriction site-associated DNA sequencing (RAD-

seq) data. This pipeline includes options for analysis with or without a reference

genome, and provides methods to maximize genotyping accuracy and select sets of

unlinked loci that have high statistical power. We test this pipeline on small popula-

tions of Mexican gray wolf and bighorn sheep, for which parentage analyses are

expected to be challenging due to low genetic diversity and the presence of many

closely related individuals. We compare the results of parentage analysis across SNP

panels generated with or without the use of a reference genome, and between

SNPs and microsatellites. For Mexican gray wolf, we conducted parentage analyses

for 30 pups from a single cohort where samples were available from 64% of possible

mothers and 53% of possible fathers, and the accuracy of parentage assignments

could be estimated because true identities of parents were known a priori based on

field data. For bighorn sheep, we conducted maternity analyses for 39 lambs from

five cohorts where 77% of possible mothers were sampled, but true identities of

parents were unknown. Analyses with and without a reference genome produced

SNP panels with ≥95% parentage assignment accuracy for Mexican gray wolf, out-

performing microsatellites at 78% accuracy. Maternity assignments were completely

consistent across all SNP panels for the bighorn sheep, and were 74.4% consistent

with assignments from microsatellites. Accuracy and consistency of parentage analy-

sis were not reduced when using as few as 284 SNPs for Mexican gray wolf and

142 SNPs for bighorn sheep, indicating our pipeline can be used to develop SNP

genotyping assays for parentage analysis with relatively small numbers of loci.

K E YWORD S

Canis lupus baileyi, CERVUS, maternity, Ovis canadensis, paternity, restriction site-associated DNA

sequencing, single nucleotide polymorphism

Received: 15 September 2017 | Revised: 18 May 2018 | Accepted: 24 May 2018

DOI: 10.1111/1755-0998.12910

Mol Ecol Resour. 2018;18:1263–1281. wileyonlinelibrary.com/journal/men © 2018 John Wiley & Sons Ltd | 1263

http://orcid.org/0000-0003-4721-1924
http://orcid.org/0000-0003-4721-1924
http://orcid.org/0000-0003-4721-1924
http://www.wileyonlinelibrary.com/journal/MEN
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1755-0998.12910&domain=pdf&date_stamp=2018-07-09


1 | INTRODUCTION

The ability to identify the parents of individuals in wild populations

can provide insight into a wide range of topics including inbreeding

levels (Dunn, Clancey, Waits, & Byers, 2011; Pemberton, 2004),

translocation success (Hogg, Forbes, Steele, & Luikart, 2006; Marker

et al., 2008), hybridization (Adams, Kelly, & Waits, 2003; Steyer

et al., 2016), demographic processes (D’Aloia et al., 2015; Douhard,

Festa-Bianchet, & Pelletier, 2016), mating system (Dugdale, Macdon-

ald, Pope, & Burke, 2007; Hogg & Forbes, 1997; Jones, Kvarnemo,

Moore, Simmons, & Avise, 1998), disease transmission (Plowright

et al., 2017) and quantitative genetics (DiBattista, Feldheim, Garant,

Gruber, & Hendry, 2009; Janeiro, Coltman, Festa-Bianchet, Pelletier,

& Morrissey, 2017; Nguyen, Hayes, & Ingram, 2014). Genetic data

can provide a powerful tool for identifying parents, and currently the

main type of genetic marker used for parentage analysis in wild pop-

ulations is microsatellites (Jones, Small, Paczolt, & Ratterman, 2010;

Pemberton, 2008). One of the greatest strengths of microsatellites

for parentage analysis is high polymorphism levels, which lead to

high statistical power. However, a major disadvantage of microsatel-

lites is that genotyping involves subjective visual interpretation of

images, which can lead to relatively high genotyping error rates and

the inability to directly compare data across laboratories (Bonin

et al., 2004; Pompanon, Bonin, Bellemain, & Taberlet, 2005). In addi-

tion, the discovery and genotyping of microsatellite loci can be

expensive and time-consuming.

Because of these drawbacks, single nucleotide polymorphisms

(SNPs) have long been hailed as advantageous over microsatellites

for addressing many ecological and evolutionary questions, including

parentage assignment (Anderson & Garza, 2006; Brumfield, Beerli,

Nickerson, & Edwards, 2003; L�opez-Herr�aez, Schafer, Mosner, Fries,

& Wink, 2005; Morin, Luikart, Wayne, & Grp, 2004). Genotyping of

SNPs is less subjective, and SNP data can often be directly com-

pared across laboratories provided the same protocols have been

used for laboratory and bioinformatic analyses. In addition, genotyp-

ing of SNPs is typically less time-consuming than microsatellites, and

SNP loci are more abundant in the genome than microsatellites.

However, each SNP locus has lower heterozygosity and therefore

lower statistical power than each microsatellite locus, and therefore

larger numbers of SNPs than microsatellites are required to achieve

sufficient power for parentage analyses (Glaubitz, Rhodes, &

Dewoody, 2003; Hauser, Baird, Hilborn, Seeb, & Seeb, 2011;

Tokarska et al., 2009). Furthermore, until recently the process for

discovering large numbers of SNPs was costly and time-consuming

for nonmodel organisms (Morin et al., 2004), and therefore, SNPs

were not practical for many applications (Glaubitz et al., 2003; Jones

et al., 2010).

The development of new high-throughput sequencing (HTS)

technologies over the last decade has dramatically increased the fea-

sibility of SNP discovery and genotyping due to substantial

decreases in time and cost for generating large quantities of

sequence data. HTS facilitates several methods for discovering and

genotyping large numbers of SNPs, including whole-genome

sequencing (Ekblom & Wolf, 2014), transcriptome sequencing (De

Wit, Pespeni, & Palumbi, 2015), DNA capture (Jones & Good, 2016)

and restriction site-associated DNA sequencing (RADseq) (Andrews,

Good, Miller, Luikart, & Hohenlohe, 2016). Of these methods, RAD-

seq has a number of advantages for identifying parentage-informa-

tive SNPs in nonmodel organisms. RADseq involves sequencing

regions adjacent to restriction cut sites and therefore generates

sequence data from across the genome, primarily in noncoding

regions. RADseq is flexible in the number of loci it can target, but

typically generates data from more than enough loci for parentage

analyses. Compared to whole-genome and transcriptome sequencing,

RADseq is much less expensive per sample, primarily because it gen-

erates data from a much smaller number of loci. In addition, RADseq

is advantageous over transcriptome sequencing because it does not

require high-quality tissue samples, which are often unavailable for

wild populations. When compared to DNA capture, RADseq is

advantageous because it requires no prior genomic knowledge, and

is largely unaffected by ascertainment bias (Clark, Hubisz, Busta-

mante, Williamson, & Nielsen, 2005; Lachance & Tishkoff, 2013).

Although RADseq can be used directly for parentage analyses,

projects with large sample sizes may save time and money by first

using RADseq for SNP discovery with a subset of samples, and then

using a different method for SNP genotyping of the remaining sam-

ples. RADseq typically generates data from at least several thousand

SNPs, whereas parentage analyses usually require just tens or hun-

dreds of SNPs (Anderson & Garza, 2006; Glaubitz et al., 2003; Kai-

ser et al., 2017; Tokarska et al., 2009). A number of approaches

exist that are time- and cost-efficient for genotyping these smaller

numbers of SNPs for large numbers of samples, including Fluidigm

Dynamic Array (Fluidigm Corp, San Francisco, USA), MassARRAY

(Agena Biosciences, San Digeo, USA), multiplex PCR amplicon

sequencing (Campbell, Harmon, & Narum, 2015) and Rapture (Ali

et al., 2016). For studies relying on noninvasively collected samples,

such as faecal and hair samples (e.g., Constable, Ashley, Goodall, &

Pusey, 2001; Rudnick, Katzner, Bragin, Rhodes, & Dewoody, 2005),

some of these approaches will also likely outperform RADseq due to

less stringent requirements for both quantity and quality of starting

genomic DNA (Campbell et al., 2015; Kraus et al., 2015). However,

each of these approaches requires primers and/or probes that have

been custom-designed to target a predefined set of loci, which can

be accomplished using data generated for a small subset of samples

using HTS approaches like RADseq.

A small but growing number of studies are using HTS to discover

and genotype SNPs for parentage analysis in wild populations. For

example, Holman, de la Serrana, Onoufriou, Hillestad, and Johnston

(2017) used RADseq data from 104 Atlantic salmon (Salmo salar) to

identify 1,517 SNPs and then used these data to design a Fluidigm

Dynamic Array assay to genotype 289 fish at 94 loci for parentage

analysis. Weinman, Solomon, and Rubenstein (2015) used SNPs dis-

covered from transcriptome sequencing of four superb starling (Lam-

protornis superbus) samples to design a MassARRAY assay to
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genotype 224 birds at 102 loci, and Kaiser et al. (2017) took a simi-

lar approach for black-throated blue warblers (Setophaga caerules-

cens). Nguyen et al. (2014) used whole-genome sequence data from

one blue mussel (Mytilus galloprovincialis) to design a MassARRAY

assay to genotype 227 SNPs for 3,711 samples. Each of these stud-

ies found comparable or improved performance for parentage analy-

ses with SNPs when compared to microsatellites.

The optimal bioinformatic pipeline for discovering and genotyp-

ing informative SNPs will vary across HTS approaches and study sys-

tems. For example, locus assembly methods will differ for data

generated from transcriptome sequencing, whole-genome sequenc-

ing, DNA capture or the wide variety of RADseq methods. In addi-

tion, the numbers of SNPs that must be identified to achieve strong

statistical power for parentage analyses will vary across study sys-

tems based on genetic diversity, mating system and the number of

individuals sampled. However, all bioinformatic pipelines will share

some common goals; for example, all must take into account the rel-

atively high genotyping error rate inherent in HTS data, identify and

remove SNPs in paralogous and other repetitive genomic regions,

and generate a set of unlinked loci.

Here, we develop a bioinformatic pipeline to identify a panel of

informative SNPs for parentage analysis from RADseq data in two

study systems: Mexican gray wolf (Canis lupus baileyi) and bighorn

sheep (Ovis canadensis). High-quality reference genomes are available

from closely related species for both of these taxa, and our pipeline

includes the option of alignment to a reference genome. However,

many nonmodel study systems will not have an available reference

genome, and therefore, our pipeline also includes an option for

assembling loci de novo. We compare the results of parentage analy-

ses conducted with reference-based and de novo-assembled SNP

panels, and with results generated using microsatellite markers. We

expected large numbers of markers would be required to achieve

sufficient statistical power for parentage analyses in both study sys-

tems, because both are small populations (about 80-110 individuals),

and are therefore expected to have low genetic diversity. Another

reason to expect low diversity in the Mexican gray wolf population

is that its sole source is a captive population that was started by just

seven individuals. Furthermore, the Mexican gray wolf has a mating

system which results in large numbers of full siblings, as breeding

typically occurs only between one breeding female and one breeding

male within each pack across multiple years, and large numbers of

markers may be required to distinguish between full siblings as

potential parents. In contrast, the bighorn sheep has a polygynous

mating system, with males competing for access to females for mat-

ing. Larger males tend to dominate matings, but most females breed

and produce just one offspring every year, and therefore, the pro-

portion of full siblings in the population should be lower than for the

Mexican gray wolf.

For the Mexican gray wolf study system, we conducted both

maternity and paternity analyses, and we knew a priori with high

certainty the true identities of both parents for all sampled pups

based on observational field data; therefore, this study system pro-

vided an excellent opportunity to test both the power and accuracy

of our bioinformatic pipeline for parentage analyses. For our bighorn

sheep study, we performed maternity analyses only, and for this

study, we did not know the identities of mothers a priori. Therefore,

we were not able to test the accuracy of the bighorn sheep mater-

nity assignments, but were able to compare statistical power and

consistency of maternity assignments across SNP panels and marker

types. For both study systems, we determined the minimum number

of SNPs that could be used without reducing the accuracy or consis-

tency of parentage analyses, with the aim of designing a cost-effec-

tive assay for genotyping large numbers of samples in the future.

2 | METHODS

2.1 | Study systems and sample collection

Mexican gray wolves were originally distributed across the south-

west United States and central Mexico, but were almost completely

eradicated by the mid-1900s. In 1998, a wild population was re-

established by releasing 11 captive individuals (Fish and Wildlife Ser-

vice 2015). Through additional releases and natural reproduction, the

wild population size had reached 113 at the end of 2016. Mexican

gray wolves live in packs comprised of about four to eight individu-

als, including one breeding pair that is usually monogamous, and

extended family members that typically do not breed. Mexican gray

wolves begin breeding at 2 years of age, and litter size is usually

four to six pups, and pups remain in the natal pack until at least

1.5 years of age (Fish and Wildlife Service 2010).

Mexican gray wolf adults, yearlings and pups are captured each

year as part of a long-term monitoring project by the U.S. Fish and

Wildlife Service. The age of each individual is estimated based on

body size and tooth morphology, and blood samples are collected.

For the study described here, we used blood samples from all indi-

viduals determined to have been born in 2014 (hereafter called

“pups”), all individuals of the appropriate age to be potential parents

of these pups, and eight additional individuals (pups and adults from

other years) (Table 1a, Supporting Information Table S1). For each

pup, we had high certainty of the true identities of both parents

from field data: we knew the geographic location where each pup

was sampled, the geographic range of each pack, and the identities

of the male and female breeding pair for each pack.

Bighorn sheep were extirpated from much of their historical

range in the western United States during the late 19th and early

20th century (Buechner, 1960). Extensive restoration efforts have

successfully re-established this species in historical habitat, although

these populations are often small and fragmented (Olson, Whittaker,

& Rhodes, 2013). Bighorn sheep are polygynous, and males use vari-

ous tactics to obtain matings, but not all males sire offspring (Hogg

& Forbes, 1997). Females generally give birth to one lamb per year

starting at age two, and lambs are weaned by about 4 months.

The Lostine bighorn sheep population in northeast Oregon was

re-established in 1971 with the translocation of 20 individuals from

Alberta, and the population grew and has remained around 80 sheep

over the last 20 years (Cassirer et al., 2013; Coggins, 2006). Each
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winter from 2011 to 2016, we captured six- to nine-month-old

lambs, yearlings and adults using baited corral traps and ground-dart-

ing; sampling of adults focused primarily on females (Table 1b, Sup-

porting Information Table S2). We estimated the age of each

individual based on morphology (for lambs), tooth eruption and cap-

ture history (Plowright et al., 2017), and collected blood and tissue

samples (Table 1b, Supporting Information Table S2). We also col-

lected faecal samples from unmarked individuals after they defe-

cated. Lambs were sampled postweaning at 6–9 months of age, and

most were no longer associating with their dam at this age; there-

fore, the identity of their dam was uncertain. Potential dams for

each lamb were identified as adult females at least 2 years old and

known to be alive at the time of the lamb’s birth.

2.2 | Sample sizes

Generating RADseq data requires a greater quantity and higher qual-

ity of genomic DNA than does generating microsatellite data. Our

RADseq protocol uses 50 ng of high-molecular-weight genomic

DNA, whereas our microsatellite protocols are often successful even

with nondetectable quantities of degraded DNA. Thus, our RADseq

analyses used a subset of our total samples because some samples

had insufficient quantity or quality of DNA. Hereafter, we refer to

the sample set including all individuals as the “full data set” and the

sample set including individuals with RADseq data as the “reduced

data set” (Table 1, Supporting Information Tables S1 and S2).

For the Mexican gray wolf, we generated microsatellite data for

30 pups, 57 potential parents (21 females and 36 males), and eight

additional individuals (pups and adults from other years), and we

generated RADseq data for 30 pups, 34 potential parents (14

females and 20 males) and eight additional individuals (Table 1a,

Supporting Information Table S1). These numbers do not include

one potential mother that was later removed from the RADseq data

set due to low numbers of genotyped RADseq loci (see below).

For the bighorn sheep, we generated microsatellite data from 42

lambs, 47 potential mothers, eight individuals that were both a lamb

and a potential mother (e.g., a lamb born in 2011 could be the

mother of a lamb born in 2015), and three additional males

(Table 1b, Supporting Information Table S2). We generated RADseq

data for 31 lambs, 41 potential mothers, eight individuals that were

both a lamb and potential mother, and two additional males. These

numbers do not include one lamb that was later removed from the

RADseq data set due to low numbers of genotyped RADseq loci

(see below).

2.3 | DNA extraction

DNA was extracted from blood and tissue samples using the DNeasy

Blood and Tissue Kit (Qiagen, Inc.), and from faecal samples using

the QIAamp Fast DNA Stool Mini Kit (Qiagen, Inc.). Faecal samples

were extracted in a laboratory dedicated to low quality DNA sam-

ples. One negative control was included in each extraction to moni-

tor for contamination of reagents.

2.4 | Microsatellite analyses

A total of 22 microsatellite loci were PCR amplified for each Mexi-

can gray wolf sample (see Supporting Information Appendix S1 for

PCR conditions), and a total of 15 microsatellite loci were PCR

amplified in two multiplexes for each bighorn sheep sample (see Plo-

wright et al., 2017 for PCR conditions). All PCRs were run with a

negative control to test for reagent contamination. Each multiplex

microsatellite PCR was performed twice for blood and tissue sam-

ples, and at least three times for faecal samples. PCR products were

run on an Applied Biosystems 3130xl Genetic Analyzer and scored

using GENEMAPPER v5.0 (Applied Biosystems, Inc). For faecal samples,

we accepted a heterozygous genotype if it was observed in at least

two PCRs, and a homozygous genotype if it was observed in at least

three PCRs. We discarded samples with <50% amplification success

or for which a consensus genotype was not obtained for at least 11

loci after five PCRs per multiplex. We used CERVUS 3.0 (Kalinowski,

Taper, & Marshall, 2007) to estimate observed heterozygosity (Ho),

expected heterozygosity (He) and combined nonexclusion probability

across loci (the probability of not excluding a single unrelated candi-

date parent or parent pair from parentage assignment), and to test

whether microsatellite loci deviated from Hardy–Weinberg equilib-

rium (HWE).

2.5 | RADseq library prep and sequencing

RADseq libraries were prepared following Ali et al. (2016), starting

with 50 ng of high-molecular-weight genomic DNA per sample.

Genomic DNA was digested using the restriction enzyme SbfI, and

biotinylated RADseq adapters containing 8 bp barcodes were ligated

to the restriction cut sites. The ligation products from all samples

TABLE 1 Sample sizes and estimated per cent of all possible
parents sampled in the full and reduced data sets for (a) Mexican
gray wolf and (b) Bighorn sheep

Sample type

Full data set
Reduced data
set

n % parents n % parents

(a)

Pups (2014) 30 30

Potential mothers 21 95 14 64

Potential fathers 36 100 20 53

Other 8 8

Total 95 72

(b)

Lambs (2011–2015) 42 31

Lambs + potential mothers 8 8

Potential mothers 47 90 41 77

Other 3 2

Total 100 82
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were combined, and the multiplexed ligation product was then

sheared to 400 bp using a Covaris M220 Focused-ultrasonicator.

Genomic DNA fragments without ligated adapters (and therefore

without restriction cut sites) were removed using Streptavidin bead

washes, and the remaining DNA with ligated adapters was processed

using the NEBNext Ultra DNA Library Prep Kit for Illumina, exclud-

ing the initial shearing step. The resulting libraries were sequenced

using an Illumina HiSeq4000 at the University of California Berkeley

QB3 Vincent J. Coates Genomics Sequencing Library with 150 bp

paired end reads.

We performed RADseq library prep and Illumina sequencing

twice independently for 18 of our bighorn sheep samples and nine

of our Mexican gray wolf samples, for the purpose of choosing the

best parameters for locus filtering (see below), or to increase the

numbers of sequence reads for samples with low read counts after

an initial Illumina run.

2.6 | RADseq de-multiplexing and quality control

Our bioinformatic pipeline is illustrated in Figure 1 and includes ana-

lytical methods for both reference genome-based and de novo RAD-

seq analyses. For the RADseq method used here, the barcode and

partial restriction site can occur on either the forward or reverse Illu-

mina reads (Ali et al., 2016). Therefore, we used a custom perl script

Align to reference 
genome (BOWTIE2)

Illumina sequencing

“Flip,” de-multiplex, 
quality control (STACKS 

process_radtags)

Remove PCR 
duplicates

Identify loci 
(replicates merged)
(STACKS refmap)

Filter reads: MQ<40, 
2nd reads, mtDNA, 

X chromosome

RADseq Library Prep

Filter loci by depth & 
%  individuals

(STACKS populations)

Filter loci by optimal 
depth & % individuals
(STACKS populations)

HWE filter
(PLINK)

LD analysis
(PLINK)

Parentage analysis
(CERVUS)

Identify loci 
(replicates not merged)

(STACKS refmap)

Compare replicates & 
choose optimal 

parameters

(a) Replicate comparisons 
for parameter optimization

(c) Final analyses

MAF filter
(PLINK)

LD filter 
(PLINK)

(b) Linkage analysis

Reference genome 
alignment-based analysis

De novo assembly-
based analysis

Identify loci 
(replicates not merged)
(STACKS denovo_map)

Filter loci by %  
individuals

(STACKS populations)

Compare replicates & 
choose optimal 

parameters

Identify loci 
(replicates merged, 

optimal parameters)
(STACKS denovo_map)

Filter loci by optimal %  
individuals & MAF

(STACKS populations)

HWE filter
(PLINK)

LD analysis
(PLINK)

(e) Linkage analysis

LD filter
(PLINK)

Parentage analysis 
(CERVUS)

(d) Replicate comparisons 
for parameter optimization

(f) Final analyses

F IGURE 1 Bioinformatic pipeline for discovering and genotyping RADseq SNPs for parentage analysis with a reference genome (“Reference
genome alignment-based analysis”) and without a reference genome (“De novo assembly-based analysis”). Dashed lines indicate that parameter
optimization analysis (a,d) and linkage disequilibrium analysis (b,e) are used to inform parameter choices for final analysis (c,f) [Colour figure can
be viewed at wileyonlinelibrary.com]
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to “flip” the raw sequence reads so that all reads starting at the

restriction cut site were in one file, with the other reads (“second

reads”) in a second file (Supporting Information Appendix S2). The

program PROCESS_RADTAGS in STACKS 1.42 (Catchen, Hohenlohe, Bas-

sham, Amores, & Cresko, 2013) was used to demultiplex reads by

barcode and to remove reads with poor sequence quality or uncalled

bases. This program uses a sliding window approach to identify and

remove reads with average phred scores less than 10 (90% probabil-

ity of being correct) for each window. PCR duplicates were then

removed using the CLONE_FILTER program in STACKS.

2.7 | Reference alignment-based analyses

2.7.1 | Genome alignment and mapping quality
filtering

Filtered Mexican gray wolf sequence reads were aligned to the

domestic dog genome (Canis lupus familiaris, CanFam3.1), and filtered

bighorn sheep sequence reads were aligned to the domestic sheep

genome (Ovis aries, Oar_v3.1) using BOWTIE2 v.2.1.0 (Langmead &

Salzberg, 2012) with the following parameters: –sensitive, –end-to-

end, –X 900. Reads with mapping quality ≤40 and reverse reads were

removed using PYSAM (https://github.com/pysam-developers/pysam,

Li et al., 2009). We discarded reverse reads because these reads do

not start at a restriction cut site when using the Ali et al. (2016) proto-

col, and instead start a variable distance away from the restriction cut

site, and therefore, SNPs in the reverse reads are expected to have

low depth of coverage. Reads aligning to the X chromosome and the

mitochondrial DNA (mtDNA) were also removed.

2.7.2 | Parameter optimization: minimum depth and
per cent individuals genotyped

We used the program REF_MAP in STACKS to identify SNPs for each

individual sample from the reference-aligned sequence reads using a

maximum likelihood approach. We required a minimum of three

identical reads to create a stack and used an upper bound for the

sequence error rate at 0.01. We then used the program POPULATIONS

in STACKS to identify the best parameters for the “minimum depth

of coverage to accept a locus” and the “minimum per cent of individ-

uals genotyped to accept a locus” (hereafter “r”). To accomplish this,

we chose five samples for which library prep and sequencing were

conducted twice independently (hereafter called “replicate pairs”) to

compare the consistency of genotypes across replicates by calculat-

ing the genotype mismatch rate, or the proportion of loci for which

genotypes were inconsistent between replicate pairs. We expected

the genotype mismatch rate across samples to be related to the

sequence read count, and therefore, we chose the five replicate pairs

with the greatest range in sequence read count, to maximize our

ability to predict error rates for samples across the range of read

counts in our data set.

We tested 25 parameter sets in POPULATIONS, varying the mini-

mum depth from five to nine, and varying r from 50% to 90%. These

analyses were conducted using all samples in the data set; for each

of the five chosen replicate pairs, the data from each of the two

replicates were analysed individually, whereas sequence reads from

all other replicate pairs were merged. For all parameter sets, we fil-

tered out loci with minor allele frequency (MAF) <0.05 to minimize

sequence errors present in the data set. We then estimated geno-

type mismatch rates between replicate samples using a modification

of an R script developed by Mastretta-Yanes et al. (2015). The mis-

match rate for each replicate pair was calculated as the number of

loci for which the genotypes were different between replicates,

divided by the total number of loci typed for both replicates.

2.7.3 | Filtering by HWE, MAF, and linkage

After identifying the parameter values that generated the lowest

genotype mismatch rates, we merged the sequence data from the

replicate samples and conducted the REF_MAP analysis using these

merged samples, and then used the optimized parameter values in

POPULATIONS to identify and genotype SNPs for all samples. We then

used PLINK 1.90 (Purcell et al., 2007) to remove loci that were not

in HWE (p < 0.05, using the mid-p adjustment recommended by the

PLINK authors). To determine the best method for removing linked

loci, we visualized linkage disequilibrium (LD) decay by plotting the

squared allele count correlation (r2) between all pairs of SNPs,

except pairs more than 20 SNPs or 2,000 kb apart, calculated using

PLINK. We then used PLINK to conduct a series of four MAF filters

(retaining only loci with MAF>0.1, MAF>0.4, MAF>0.45,

MAF>0.475) to determine the lowest number of the highest diver-

sity loci that could provide sufficient statistical power for parentage

analyses. We then used PLINK to filter out linked loci from each of

the filtered locus sets. We also used PLINK to identify individual

samples with >70% missing data. We then genotyped all individuals,

excluding individuals with >70% missing data, for each of the fil-

tered locus sets using “whitelists” (lists of the desired loci to be

genotyped) in POPULATIONS.

2.8 | De novo assembly-based analyses

2.8.1 | Locus assembly and parameter optimization

We used the DENOVO_MAP pipeline in STACKS to assemble loci

de novo. We only used the forward sequence reads for this analysis,

for the same reasons described above for the reference-based analy-

sis. Locus assembly in STACKS is determined by three main parame-

ters: the minimum number of identical raw reads to create a stack

within an individual (m), the maximum number of mismatches

allowed between stacks to merge them into one locus within an

individual (M) and the maximum number of mismatches allowed to

merge stacks from different individuals into one locus (n) (Catchen

et al., 2013). We tested 11 parameter combinations: m = 2–6 (with

other parameters fixed at M = 2, n = 1), M = 2–5 (with m = 3,

n = 1), and n = 1–4 (with m = 3, M = 2), using the same five repli-

cate pairs as for the reference-based analysis described above. We

1268 | ANDREWS ET AL.

https://github.com/pysam-developers/pysam


then used POPULATIONS to identify the optimal value for r (minimum

per cent of individuals genotyped to accept a locus), testing four dif-

ferent values: 40%, 60%, 80%, 90%. We estimated genotype mis-

match rates between replicate samples using the approach described

above.

2.8.2 | Filtering by MAF, HWE and linkage

After identifying the de novo parameter values that generated the

lowest genotype mismatch rates, we merged the sequence data from

the replicate samples and conducted the DENOVO_MAP analysis

using the optimal values for m, M and n, and then used the optimal

value for r in POPULATIONS to identify and genotype SNPs for all sam-

ples. We also used POPULATIONS to filter SNPs by three MAF cut-offs

(retaining SNPs with MAF>0.05, >0.3, >0.4); we used lower MAF

cut-offs for de novo than reference-based analyses after initial anal-

yses with optimal de novo parameters indicated that high MAF cut-

offs resulted in fewer than 100 SNPs. We also used POPULATIONS to

filter all except one SNP per RAD locus (parameter –write_single_

snp) to reduce the number of physically linked loci retained. We

then used PLINK to remove loci that were not in HWE (p < 0.05,

using the mid-p adjustment). To determine the best method for

removing physically linked loci under a hypothetical scenario in

which we did not have a reference genome available, we calculated

r2 between all pairs of SNPs (filtered for HWE and MAF>0.05) using

PLINK and plotted a histogram of these values. We then chose a

maximum r2 value cut-off that would conservatively exclude the tails

of the distribution, and used PLINK to filter one of each SNP from

pairs with r2 values greater than this cutoff. We also used PLINK to

identify individual samples with >70% missing data. We then geno-

typed all individuals, excluding individuals with >70% missing data,

for each of the filtered locus sets using whitelists in POPULATIONS.

2.9 | Parentage analysis

For both of our study systems, we conducted parentage analyses

with microsatellite and RADseq markers using CERVUS (Supporting

Information Tables S3, S4, S5, S6, S7, Appendix S3). This program

calculates the likelihood that each candidate female or male is the

mother or father, taking into account population allele frequencies

and genotyping errors. To determine whether a potential parent has

a high enough likelihood score to assign parentage, CERVUS uses a

simulation approach based on the observed allele frequencies to cal-

culate the expected differences in likelihood between the true par-

ent and other candidate parents.

As described above, we had lower sample sizes with RADseq

data (“reduced data set”) than with microsatellite data (“full data set”)

for both study systems. Therefore, we conducted microsatellite anal-

yses using both the reduced and the full data sets (to compare the

performance of microsatellites for these two different data set sizes),

and we conducted RADseq analyses using just the reduced data set.

For all simulation analyses, we used 100,000 offspring (as recom-

mended by the CERVUS authors), an estimated genotyping error rate

of 1% for both the microsatellites and RADseq SNPs, and an esti-

mated “per cent parents sampled” determined based on observa-

tional field data (see Results section). For the Mexican gray wolf, we

accepted a parent-pair assignment at a 95% confidence level. If no

parent pairs were assigned for a given pup, then we accepted a sin-

gle-parent assignment at a 95% confidence level. For the bighorn

sheep, we accepted assignments at lower stringency (80% confi-

dence level) after we observed few assignments at the 95% confi-

dence level for microsatellite data. We also used CERVUS to estimate

Ho, He and combined nonexclusion probability for each SNP set.

2.10 | Delta scores

The statistical power of parentage analysis can be evaluated by

examining delta scores calculated for each offspring by CERVUS. Delta

scores are the difference in logarithm of odds (LOD, calculated as

the natural log of the overall likelihood ratio) scores between the

most likely candidate parent and the second most likely candidate

parent, treating negative LOD scores as zero. Greater delta scores

should indicate greater power to distinguish between candidate par-

ents. We compared delta values for Mexican gray wolf maternal and

paternal assignments, and for bighorn maternal assignments.

2.11 | Parent/offspring locus incompatibility rates

Locus incompatibility rates between assigned parents and offspring

can provide insight into factors driving the performance of parentage

analyses. Parent/offspring locus incompatibilities occur when the

allelic composition of a locus is inconsistent with a parent/offspring

relationship, for example if an offspring has no alleles in common

with the assigned parent at the locus. When conducting parentage

analyses in CERVUS, the number of incompatibilities allowed between

offspring and assigned parents is dictated by the estimated genotyp-

ing error rate. We calculated the proportion of loci with incompati-

bilities for assigned parent/offspring pairs for all locus sets and

sample sets for the Mexican gray wolf, for which we had prior

knowledge of the correct parentage assignments.

3 | RESULTS

3.1 | Microsatellite diversity

For the Mexican gray wolf, no microsatellite loci significantly devi-

ated from HWE, and an average of 99.8% of loci were typed across

individuals. For the bighorn sheep, one of the 15 loci (BL4) deviated

from HWE and was removed from subsequent analyses, and an

average of 99.2% of the remaining loci were genotyped across indi-

viduals. Mean Ho and He across loci for the full data set were similar

for the Mexican gray wolf (Ho = 0.65, He = 0.62) and bighorn sheep

(Ho = 0.59, He = 0.61) (Table 2). Nonexclusion probability for parent

pairs for the Mexican gray wolf (7.0 9 10�8) was higher than nonex-

clusion probability for first parents for the bighorn sheep (0.026)

(Table 2).

ANDREWS ET AL. | 1269



T
A
B
L
E

2
N
um

be
rs

o
f
lo
ci

an
d
di
ve

rs
it
y
st
at
is
ti
cs

fo
r
di
ff
er
en

t
m
ic
ro
sa
te
lli
te

an
d
R
A
D
se
q
m
ar
ke

r
se
ts

an
d
sa
m
pl
e
se
ts

M
ex

ic
an

gr
ay

w
o
lf

B
ig
ho

rn
sh
ee

p

#
lo
ci

N
E
P

H
o

H
e

#
lo
ci

N
E
P

H
o

H
e

M
ea

n
Lo

w
H
ig
h

M
ea

n
Lo

w
H
ig
h

M
ea

n
Lo

w
H
ig
h

M
ea

n
Lo

w
H
ig
h

M
ic
ro
sa
ts

F
ul
l
da

ta
se
t

2
2

7
.0

9
1
0
�
8

0
.6
5

0
.3
2

0
.8
1

0
.6
2

0
.3
1

0
.7
6

1
4

0
.0
2
6

0
.5
9

0
.1
9

0
.7
7

0
.6
1

0
.1
8

0
.8
2

R
ed

uc
ed

da
ta

se
t

2
2

6
.0

9
1
0
�
8

0
.6
5

0
.3
2

0
.8
5

0
.6
2

0
.3
2

0
.7
7

1
4

0
.0
2
5

0
.6
2

0
.2
1

0
.8
4

0
.6
0

0
.2
0

0
.7
8

R
A
D
se
q:

R
ef
er
en

ce
-a
lig
ne

d

M
A
F
>
0
.1

1
,4
7
8

7
.3

9
1
0
�
1
8
0

0
.4
2

0
.1
5

0
.6
2

0
.4
0

0
.1
8

0
.5
0

3
,0
4
4

2
.5

9
1
0
�
1
0
1

0
.3
7

0
.1
5

0
.6
2

0
.3
7

0
.1
8

0
.5
0

M
A
F
>
0
.4

4
8
0

4
.4

9
1
0
�
6
9

0
.5
2

0
.3
8

0
.6
2

0
.5
0

0
.4
8

0
.5
0

6
3
9

9
.2

9
1
0
�
3
7

0
.4
9

0
.3
8

0
.6
2

0
.5
0

0
.4
8

0
.5
0

M
A
F
>
0
.4
5

2
9
2

1
.6

9
1
0
�
4
2

0
.5
2

0
.3
9

0
.6
2

0
.5
0

0
.5
0

0
.5
0

3
3
3

6
.6

9
1
0
�
2
0

0
.5
0

0
.3
8

0
.6
2

0
.5
0

0
.5
0

0
.5
0

M
A
F
>
0
.4
7
5

1
5
9

1
.6

9
1
0
�
2
3

0
.5
2

0
.4
0

0
.6
2

0
.5
0

0
.5
0

0
.5
0

1
6
4

3
.2

9
1
0
�
1
0

0
.5
0

0
.3
9

0
.6
2

0
.5
0

0
.5
0

0
.5
0

R
A
D
se
q:

D
e
no

vo

m
=
3
,M

A
F
>
0
.0
5

3
6
3

3
.2

9
1
0
�
4
5

0
.4
3

0
.1
0

0
.6
2

0
.4
1

0
.1
0

0
.5
0

M
A
F
>
0
.0
5

5
2
3

4
.9

9
1
0
�
1
8

0
.1
0

0
.3
6

0
.6
1

0
.1
0

0
.3
6

0
.5
0

m
=
4
,M

A
F
>
0
.0
5

2
8
4

1
.4

9
1
0
�
3
4

0
.4
1

0
.0
8

0
.6
3

0
.4
0

0
.1
0

0
.5
0

M
A
F
>
0
.3

2
4
0

2
.2

9
1
0
�
1
3

0
.4
7

0
.3
5

0
.6
1

0
.4
8

0
.4
2

0
.5
0

m
=
5
,M

A
F
>
0
.0
5

2
2
3

3
.8

9
1
0
�
2
6

0
.3
9

0
.1
0

0
.6
2

0
.3
7

0
.1
0

0
.5
0

M
A
F
>
0
.4

1
4
2

8
.8

9
1
0
�
9

0
.4
8

0
.3
8

0
.6
1

0
.5
0

0
.4
8

0
.5
0

m
=
6
,M

A
F
>
0
.0
5

1
3
9

1
.2

9
1
0
�
1
4

0
.3
3

0
.1
0

0
.5
8

0
.3
1

0
.1
0

0
.5
0

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
A

N
ot
e.

H
o
:
o
bs
er
ve

d
he

te
ro
zy
go

si
ty
;
H
e
:
ex

pe
ct
ed

he
te
ro
zy
go

si
ty
;
N
E
P
:
co

m
bi
ne

d
no

ne
xc
lu
si
o
n
pr
o
ba

bi
lit
y
fo
r
pa

re
nt

pa
ir
s
(M

ex
ic
an

gr
ay

w
o
lf
)
an

d
fi
rs
t
p
ar
en

ts
(b
ig
h
o
rn

sh
ee

p
).
P
ar
am

et
er

se
ts

w
er
e
th
e

sa
m
e
fo
r
M
ex

ic
an

gr
ay

w
o
lf
an

d
B
ig
ho

rn
sh
ee

p,
ex

ce
pt

as
in
di
ca
te
d
fo
r
th
e
de

no
vo

an
al
ys
es
.

1270 | ANDREWS ET AL.



3.2 | Locus identification and genotyping:
reference-based methods

A large percentage of sequence reads aligned to the reference gen-

omes for both species, including a mean of 96.9% of reads (range:

96.7%–97.0%) for Mexican gray wolf and a mean of 94.0% of reads

(range: 78.0%–95.8%) for bighorn sheep. The Mexican gray wolf had

a greater mean percentage of mapped reads retained after mapping

quality filtering (mean: 84.0%, range 84.7%–85.8%) than bighorn

sheep (mean: 72.5%, range: 45.9%–83.0%). After removing reads

aligned to the X chromosome and mtDNA, and merging reads for

individuals that were sequenced more than once, the total number

of reads retained across samples was higher for Mexican gray wolf

(mean: 2.88 million, range: 0.275 million–12.4 million) than bighorn

sheep (mean 1.70 million, range: 0.299 million–4.91 million). For the

five samples chosen as replicates for evaluating the best parameter

values for minimum depth and minimum per cent individuals (see

above), the mean number of sequence reads per replicate was 2.96

million (range: 0.686 million–6.86 million) for Mexican gray wolf and

1.16 million (range: 0.319 million–2.03 million) for bighorn sheep. Of

the 25 parameter sets for which SNPs were identified and geno-

typed using POPULATIONS, the lowest mean genotype mismatch rate

across replicates was obtained using the same parameters for both

Mexican gray wolf and bighorn sheep: minimum depth of six, and

minimum per cent individuals of 90% (Figure 2). The lowest mean

genotype mismatch rate across replicates for SNPs identified with

these parameters ranged from 0.0028 to 0.025 for Mexican gray

wolf and 0.013 to 0.045 for bighorn sheep. As expected, mismatch

rates were consistently lower across the 25 parameter sets for repli-

cate pairs with higher numbers of sequence reads (Figure 2a,c).

Linkage decay analysis indicated overall stronger linkage for

Mexican gray wolf than bighorn sheep (Figure 3). For Mexican gray

wolf, r2 decreased rapidly until 100 kb, and then decreased more

slowly but remained above 0.2 (Figure 3a). For bighorn sheep, mean

r2 decreased rapidly until 200 kb and then remained around 0.1 (Fig-

ure 3b). Based on these results, we chose the following filter param-

eters to retain unlinked loci: For the Mexican gray wolf, we removed

one locus from each pair of loci within a 1,000 kb sliding window

with r2 greater than 0.2, shifting windows by 1 bp steps; for bighorn

sheep, we removed one locus from each pair of loci within a 500 kb
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F IGURE 2 Genotype mismatch rates and number of SNPs for 25 parameter sets with reference genome-based RADseq analysis for five
replicate samples each for Mexican gray wolf (a,b) and Bighorn sheep (c,d). Parameter sets vary in the minimum depth of coverage to accept a
locus (ranging from 5 to 9) and the minimum per cent of individuals genotyped to accept a locus (r, ranging from 50% to 90%). High, medium
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sliding window with r2 greater than 0.1, shifting windows by 1 bp

steps.

Despite a larger mean number of filtered sequence reads for

Mexican gray wolf than bighorn sheep, fewer SNPs were retained

after MAF filters (Mexican gray wolf: 159–1,478 SNPs; bighorn

sheep: 164–3,044 SNPs), indicating lower diversity for this species

(Table 2). For each species, one individual had <70% loci genotyped

after MAF and LD filtering and was removed from subsequent analy-

ses. Nonexclusion probabilities were lower for Mexican gray wolf

(7.3 9 10�180–1.6 9 10�23) than bighorn sheep (2.5 9 10�101–

3.2 9 0�10).

3.3 | Locus identification and genotyping: de novo
assembly

Genotype mismatch rates from de novo analyses were most strongly

influenced by the parameter r for both species, with the lowest mis-

match rates occurring when r = 0.9 (Figure 4). Increasing values of m
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F IGURE 4 Genotype mismatch rates and number of SNPs for 44 parameter sets with de novo RADseq analysis for five replicate samples
each for Mexican gray wolf (a,b) and Bighorn sheep (c,d). Parameter sets vary in the minimum number of identical raw reads to create a stack
within an individual (m), the maximum number of mismatches allowed between stacks to merge them into one locus within an individual (M),
the maximum number of mismatches allowed to merge stacks from different individuals into one locus (n) and the minimum per cent of
individuals to accept a locus (r). Note that results from the parameter set with the default settings (m = 3, M = 2, n = 1) are shown three times
for comparative purposes
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generally resulted in decreasing mismatch rates, but varying the M

and n parameters had little impact on genotype mismatch rates. For

both species, the optimal de novo parameter set was m = 5, M = 2,

n = 1, r = 0.9. The Mexican gray wolf data set had lower mismatch

rates and greater numbers of SNPs than the bighorn sheep data set

across parameter sets, likely due to the higher average depth of cov-

erage for the Mexican gray wolf. Mean mismatch rates were slightly

lower for de novo than reference-based analyses (Mexican gray wolf

de novo range 0.0009–0.019 compared to reference-based range

0.0028–0.025; bighorn sheep de novo range 0.012–0.037 compared

to reference-based range 0.013–0.045). However, de novo analysis

resulted in fewer SNPs than reference-based analysis for both spe-

cies when using optimal parameters. For example, the genotype mis-

match analysis with optimal parameters for Mexican gray wolf

resulted in 4,222 SNPs for reference-based analysis compared to

1,082 SNPs for de novo analysis, and the analysis for bighorn sheep

resulted in 4,094 SNPs for reference-based analysis compared to

1,141 SNPs for de novo analysis.

We report r2 values for SNPs identified using the optimal de

novo and r parameter values and filtered for HWE and MAF>0.05

(Figure 5). Most r2 values were <0.1, but the tails of the distribution

extended to r2 = 1.0 for both species. We chose r2 cut-offs of 0.25

for Mexican gray wolf and 0.20 for bighorn sheep to exclude SNP

pairs with r2 values in the tails of the distribution. For the Mexican

gray wolf, MAF filtering of SNPs identified using the best de novo

parameter set retained fewer than 100 SNPs when using MAF>0.3

and MAF>0.4 filters. To retain a larger number of SNPs, we used a

MAF>0.05 filter for the four de novo parameter sets with the lowest

genotype mismatch rates (Figure 4; M = 2, n = 1, m = 3–6, r = 0.9).

In contrast, for bighorn sheep, the filtering steps retained >100 SNPs

for all MAF filters for the optimal de novo parameter set.

More loci were lost to the LD filter in de novo analyses than ref-

erence-based analyses. For Mexican gray wolf, the LD filter for de

novo analyses removed 63.3%–95.5% of SNPs across panels, com-

pared to a loss of 32.3%–67.7% of SNPs across panels for refer-

ence-based analysis. For bighorn sheep, the LD filter for de novo

analysis removed 37.4–83.9% of SNPs across panels, compared to a

loss of 12.8%–40.9% for reference-based analysis. For both species,

one individual had <70% loci genotyped after MAF and LD filters

and was removed from subsequent analyses for each parameter set,

except one parameter set for Mexican gray wolf (i.e., m = 6, M = 2,

n = 1) for which two individuals had <70% loci genotyped and were

removed.

Final SNP sets included between 139 and 363 loci for Mexican

gray wolf and between 142 and 523 loci for bighorn sheep (Table 2).

Mean Ho, mean He and nonexclusion probabilities were generally

lower for de novo SNP sets than reference-aligned SNP sets for

both species (Table 2). This likely results from less stringent MAF fil-

tering for de novo than reference-based SNPs, and therefore lower

diversity for de novo SNP panels, as well as the retention of fewer

loci for a given MAF cut-off for de novo SNPs.

3.4 | Parentage analysis

For the Mexican gray wolf, field data indicated the full data set

included 95% of potential mothers and all potential fathers in the

population. However, we used a parameter value of 90% potential

parents sampled (for each sex) for CERVUS parentage simulations with

the full data set to allow for the possibility of unsampled parents.

For the reduced data set, we used parameter values of 64% poten-

tial mothers sampled and 53% potential fathers sampled, after taking

into account the lower sample size for this data set.

As we knew with high certainty the identities of the true parents

of each Mexican gray wolf pup, we could estimate assignment error

rates for our genetic parentage analyses. The most common type of

error across all locus sets was the misassignment of a parent when

the true parent was absent from the data set (Table 3). Microsatellite

analysis of the full data set resulted in fewer assignment errors

(5.0% errors) than microsatellite analysis of the reduced data set

(22.0% errors, Table 3). When comparing the performance of RAD-

seq and microsatellites for the reduced data set, both reference-

based and de novo RADseq had consistently lower error rates

than microsatellites. For the three least-stringent MAF-filtered

SNP sets of the reference-based analyses (MAF > 0.1, MAF > 0.4,

MAF > 0.45), the error rate was 5.0%, and for the MAF>0.475 locus

set, the error rate was 10.0% (Table 3). For the de novo-assembled
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SNP sets, the error rate was lowest at m = 3 (5.0%) and m = 4

(3.3%), and then increased as m increased and the number of loci

decreased (up to 11.0%).

For bighorn sheep, the number of possible mothers in our full

data set for each lamb ranged from 36 to 46 (mean 40.2), and we

estimated we had sampled 90% of all potential mothers based on

observational field data. For the reduced data set, the number of

possible mothers ranged from 30 to 40 (mean 34.7), and we esti-

mated this data set included 77% of all potential mothers. We did

not have prior knowledge regarding the true mothers and therefore

could not calculate error rates. When comparing the maternity

assignment results across markers and sample sets for all lambs that

were present in both the full and reduced data sets (n = 39 lambs,

after removing one lamb with >70% missing RADseq data),

microsatellite analyses resulted in more assignments at the 95% con-

fidence level for the full data set (41.0% lambs) than the reduced

data set (28.2% lambs), and fewer lambs were unassigned for the full

data set (2.6% for full data set, 7.7% for reduced data set, Table 4).

The RADseq analysis resulted in more assignments at the 95%

confidence level (84.6% lambs) and more unassignments (15.4%)

than either of the microsatellite analyses (Table 4). In fact, RADseq

analysis resulted in no assignments at the 80% confidence level.

As described above, we did not have samples from all potential

mothers in the population, and therefore, unassignments may be

correct.

The identities of the mothers that were assigned to each lamb

were identical across analyses for all reference-based and de novo

RADseq SNP sets, as were the assignment confidence levels. When

comparing the RADseq results with the full-data set microsatellite

results, there were five (12.8%) assignment disagreements for the 39

offspring that were present in both the full and reduced data sets. In

all five cases, different mothers were assigned for the analyses with

the two marker types, despite the fact that both mothers were pre-

sent in both data sets. When comparing the RADseq results with

the reduced data set microsatellite results, there were 10 (25.6%)

assignment disagreements. These included the same disagreements

as in the full data set comparison, as well as four (10.3%) disagree-

ments in which RADseq did not assign a mother, but the microsatel-

lites did (although these were all assigned at 80% confidence), and

one (2.6%) disagreement in which the microsatellites did not assign a

mother, but RADseq did.

3.5 | Mechanisms underlying parentage analysis
performance

Delta scores were consistently higher for all RADseq SNP sets than

microsatellites for both species (Figure 6), indicating SNPs had

greater statistical power to distinguish correct from incorrect par-

ents. These results were supported by a substantial decrease in

# loci
Absent,
misassigned (%)

Present,
misassigned (%)

Present,
unassigned (%) Total (%)

Microsatellites

Reduced 22 20.0 2.0 0.0 22.0

Full 22 3.3 1.7 0.0 5.0

RADseq: reference-aligned

MAF>0.1 1,478 5.0 0.0 0.0 5.0

MAF>0.4 480 5.0 0.0 0.0 5.0

MAF>0.45 292 5.0 0.0 0.0 5.0

MAF>0.475 159 8.3 1.7 0.0 10.0

RADseq: De novo

m = 3, MAF>0.05 363 3.0 0.0 2.0 5.0

m = 4, MAF>0.05 284 3.3 0.0 0.0 3.3

m = 5, MAF>0.05 223 3.0 3.0 2.0 8.0

m = 6, MAF>0.05 139 8.0 0.0 3.0 11.0

Note. “Absent, misassigned”: the true parent was absent from the sample set, and another parent

was misassigned. “Present, misassigned”: the true parent was present in the sample set, but a dif-

ferent parent was misassigned. “Present, unassigned”: the true parent was present in the sample

set, but no parent was assigned. Results are shown for the 30 pups present in both the full and

reduced sample sets.

TABLE 3 Per cent incorrect Mexican
gray wolf parentage assignments for
different marker sets and sample sets

TABLE 4 Per cent of bighorn sheep maternity assignments at
80% and 95% confidence levels for different marker sets and sample
sets

Confidence

Microsatellites
RADseq

Reduced
(22 loci)

Full
(22 loci)

All SNP sets
(142–3,044 loci)

95% 28.2% 41.0% 84.6%

80% 64.1% 56.4% 0%

Not assigned 7.7% 2.6% 15.4%

Note. Results are shown for the 39 lambs present in both the full and

reduced sample sets. Results were identical for all RADseq SNP sets,

including all de novo and reference alignment-based analyses.
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nonexclusion probabilities for SNPs compared to microsatellites

(Table 2). Delta values decreased as the number of RADseq SNPs

decreased, and delta values for bighorn sheep were consistently

higher than for Mexican gray wolf. Notably, however, the number of

loci retained at each MAF filter was also higher for bighorn sheep,

which likely leads to increased statistical power (Table 2).

For Mexican gray wolf, prior knowledge of the true parents

allowed a comparison of locus incompatibility rates for correct and

incorrect parentage assignments (Figure 7). For microsatellite analy-

ses and the two de novo SNP panels with the lowest numbers of

loci (m = 5 and m = 6), incorrect assignments sometimes had incom-

patibility rates equal to zero (Figure 7). When incorrect assignments

Msats
Full

Msats
Reduced

MAF
>0.1

MAF
>0.4

MAF
>0.45

MAF
>0.475

Msats
Full

Msats
Reduced

MAF
>0.1

MAF
>0.4

MAF
>0.45

MAF
>0.475

Reference-based De novo

D
el

ta

m = 3 m = 4 m = 5 m = 6

Reference-based De novo

MAF
>0.4

MAF
>0.3

MAF
>0.05

Mexican gray wolf Bighorn sheep

F IGURE 6 Delta values for Mexican gray wolf combined maternal and paternal assignments accepted at 95% confidence, and bighorn
sheep maternal assignments accepted at 80% confidence. “Msats full” = microsatellite analysis of full data set; “Msats reduced” = microsatellite
analysis of reduced data set. “MAF” refers to minor allele frequency filtered RADseq SNP subsets, and “m” refers to the minimum number of
identical raw reads to create a stack within an individual. See Table 2 for the numbers of loci for each analysis
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have zero incompatibilities, CERVUS can only successfully exclude the

incorrect parent using population allele frequency data. Therefore,

the success of this analysis will depend on the accuracy of popula-

tion allele frequency estimates, as well as the utility of the allele fre-

quencies for distinguishing between potential parents; increased

accuracy of allele frequencies likely explains the substantially

improved performance of microsatellites for the full data set com-

pared to the reduced data set. In contrast, incorrect assignments in

the rest of the RADseq analyses never had locus incompatibility

rates of zero, and in most cases, the incorrect assignments had more

incompatibilities than any correct assignments, especially for the ref-

erence-based analyses (Figure 7). Overall, these results indicate that

high assignment error rates for the reduced data set microsatellites

and the two de novo SNP panels with the lowest numbers of loci

are likely influenced by a lack of diversity to distinguish correct from

incorrect assignments.

4 | DISCUSSION

4.1 | RADseq bioinformatic pipeline identifies
informative SNP panels for parentage analysis

Our RADseq bioinformatic pipeline identified SNP panels with high

power and accuracy for parentage assignment when using both the

reference-based and de novo options. For all Mexican gray wolf and

bighorn sheep SNP panels, nonexclusion probabilities (Table 2) and

delta values (Figure 6) indicated high statistical power, and higher

statistical power than for microsatellites. For the Mexican gray wolf

study system, we had prior knowledge of the true identities of the

parents and therefore could directly evaluate the accuracy of the

SNP panels for parentage analysis. Assignment accuracy was 95% or

higher across most SNP panels, despite the presence of many full

siblings and low diversity for this study system. This was much

higher than the accuracy for 22 microsatellites (78% for the “re-

duced data set” which includes the same samples as the RADseq

data set). The performance of the SNP panels only decreased when

the number of SNPs was lower than 284.

For the bighorn sheep study system, we did not know the true

mothers a priori and therefore could not directly assess accuracy.

However, maternity assignments were identical across all RADseq

SNP panels, indicating no reduction in power or accuracy for as

few as 142 SNPs. Furthermore, the proportion of assigned lambs

(84.6%) was consistent with our expectation based on the esti-

mated proportion of potential dams sampled (77%). We found evi-

dence that the SNP panels had higher power than microsatellites

for this species; for microsatellites, only 28.2% of lambs assigned a

mother with 95% confidence, and an additional 64.1% of lambs

assigned a mother with 80% confidence (Table 4). In contrast,

RADseq analyses either assigned mothers at 95% confidence or did

not assign a mother at all. The identities of the assigned mothers

were largely consistent across the two marker types (74.4% agree-

ment for RADseq and reduced data set microsatellites, and 87.2%

agreement for RADseq and full-data set microsatellite results; the

microsatellite full-data set had a larger sample size than the RAD-

seq data set).

Comparison of delta scores, nonexclusion probabilities, and locus

incompatibility rates across locus and sample sets provided evidence

that the reduced power and accuracy for microsatellites compared

to SNPs was driven by low overall genetic diversity for the locus set.

This low diversity likely constrained the abilities to distinguish

between potential parents and to exclude an incorrect parent when

the true parent was absent from the data set.

4.2 | Comparing performance of de novo and
reference-based RADseq pipelines

Genotype mismatch rates were slightly lower for de novo than refer-

ence-based analyses, indicating high genotyping accuracy for this

approach. However, de novo analysis with optimal parameters

resulted in almost four times fewer SNPs than reference-based anal-

ysis for both species. In addition, a greater proportion of loci was

lost to the LD filter in de novo analysis than reference-based analy-

sis. This is not surprising, given that our de novo LD filter cannot

incorporate information regarding physical positions of SNPs along

the genome (aside from information as to whether SNPs are located

on the same RAD locus), and thus, many physically unlinked loci

were likely lost in the de novo LD filter. Because few SNPs remained

after the LD filter for both species, and especially for the Mexican

gray wolf, we used low MAF cut-offs to retain sufficient numbers of

SNPs. Thus, the de novo SNP panels had lower diversity and lower

statistical power than the reference-based panels for both species.

However, this reduced power had no impact on the accuracy of

parentage assignment for the Mexican gray wolf panels with ≥284

SNPs or any of the bighorn sheep panels, and minimal impact on

accuracy for Mexican gray wolf panels with ≤223 SNPs (described

further in the next section).

4.3 | Comparing performance of different RADseq
SNP sets

To identify a subset of informative RADseq SNPs that could be used

to develop a time- and cost-effective assay for large sample sizes,

we targeted SNPs with the highest diversity, as markers with higher

diversity should have higher power for parentage analysis. To

accomplish this, we conducted a series of MAF filters to determine

the lowest number of high-diversity loci that would provide suffi-

cient power and accuracy for parentage analyses (reference-based

analysis: MAF>0.1, >0.4, >0.45, >0.475; de novo analysis for bighorn

sheep: MAF>0.05, >0.3, >0.4; for Mexican gray wolf de novo analy-

sis, we only used MAF>0.05 due to low overall numbers of SNPs, as

described above). These filters retained 139–1,478 SNPs for Mexi-

can gray wolf and 142–3,044 SNPs for bighorn sheep. For bighorn

sheep, all SNP subsets produced identical results in terms of the

identities of the mothers assigned and the confidence levels. For

Mexican gray wolf, results for all SNP subsets had ≥95% assignment

accuracy except for the SNP panels with the lowest numbers of loci
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(reference-based analysis: 159 SNPs, 90% accuracy; de novo analy-

sis: 139–223 SNPs, 89%–92% accuracy) (Table 3). Overall, these

results indicate that the performance of parentage analysis was not

compromised using as few as 284 SNPs for Mexican gray wolf and

142 SNPs for bighorn sheep.

4.4 | Choosing a bioinformatic pipeline

The optimal bioinformatic pipeline for discovering and genotyping

RADseq SNPs for parentage analysis will depend on many factors,

including the RADseq protocol chosen (see Andrews et al., 2016 for

a review of the many RADseq protocols), depth of sequencing, avail-

ability of a reference genome and various characteristics of the

study system, including the size, diversity, complexity and linkage

patterns of the genome. For both our study species, reference gen-

omes were available from closely related species, and thus, our

bioinformatic pipeline incorporates the option of reference align-

ment. Performing a strict mapping quality filter with BOWTIE2

(MQ≥40) allowed us to filter out loci that mapped poorly to the gen-

ome, or mapped to multiple locations in the genome, which could

indicate paralogs. Furthermore, alignment to a reference genome

helped us to identify and filter linked loci. If a reference genome

were not available, a genome from a more distantly related species

could also be used, although a less stringent mapping quality filter

may be necessary. Alternatively, we demonstrated here that loci can

be assembled de novo without a reference genome, and linked loci

can be identified based on allele correlations.

Bioinformatic pipelines should also be tailored to maximize geno-

typing accuracy, which is particularly important for parentage analy-

ses, especially in study systems with low diversity and large numbers

of close relatives (Hoffman & Amos, 2005). For reference-based

analyses, two parameters that strongly impact genotyping error rates

for RADseq are the minimum depth of coverage to accept a locus,

and minimum per cent individuals genotyped to accept a locus. For

de novo analyses, additional relevant parameters include the maxi-

mum numbers of genotype mismatches allowed when merging reads

into one locus within and between individuals (Catchen et al., 2013).

The optimal values for these parameters are likely to vary across

RADseq protocols and study systems, but these values are rarely

chosen based on empirical evidence (but see Catchen et al., 2013;

Mastretta-Yanes et al., 2015; Fountain, Pauli, Reid, Palsboll, & Peery,

2016; Paris, Stevens, & Catchen, 2017). Replicate comparison has

been used to choose parameters for de novo assembly of RADseq

loci (Mastretta-Yanes et al., 2015), and here, we show that this strat-

egy can also be used to choose parameters for reference-based

RADseq analysis. Notably, alternative methods have been described

for choosing optimal parameters for de novo assembly, including the

comparison of sequence data from known parents and offspring

(Fountain et al., 2016) and comparison of the numbers of loci

obtained across a variety of parameters (Paris et al., 2017).

Bioinformatic analyses to identify informative loci for parentage

analysis should ideally ensure that the loci chosen are not linked,

because parentage analyses typically assume loci are independent

(Jones & Ardren, 2003), although some methods are relatively robust

to linkage or do not assume linkage (e.g., Staples et al., 2014; Wang

& Santure, 2009). Different populations and species will have differ-

ent levels of LD depending on a number of factors including demo-

graphic history, mating system and recombination rate (Gaut & Long,

2003; Gray et al., 2009; Miller, Poissant, Malenfant, Hogg, & Colt-

man, 2015; Pritchard & Przeworski, 2001). Therefore, optimal meth-

ods for identifying a set of unlinked loci will vary across study

systems. Here, we demonstrate that RADseq data can be used to

characterize LD patterns both with and without a reference genome,

and this information can then be used to tailor bioinformatic analy-

ses to identify a subset of unlinked loci for the study system.

4.5 | Designing SNP assays

RADseq data can be used to design SNP assays that rely on technolo-

gies like amplicon sequencing, DNA capture, Fluidigm Dynamic Array

and MassARRAY. These approaches are more time- and cost-effective

than RADseq for genotyping small numbers of loci for large numbers

of samples, but require prior genomic information to design primers

and/or probes. Under some circumstances, RADseq data can be used

directly to design these primers and probes. RADseq data are typically

generated with Illumina HiSeq technology, which generates sequence

reads up to 150 bp long. This length is sufficient for designing probes

for a DNA capture approach (Ali et al., 2016), but not for designing

primers for PCR-based approaches like amplicon sequencing, Fluidigm

Dynamic Array, and MassARRAY. However, if a reference genome is

available, as for Mexican gray wolf and bighorn sheep, RADseq reads

can be aligned to the reference, and then primers and probes can be

designed directly from the reference sequence. If a reference genome

is not available, probes can be developed from the forward and/or

reverse reads, or primers may be developed by assembling the for-

ward and reverse reads, provided these reads have substantial over-

lap. This approach would be most tractable for RADseq methods that

allow assembly of forward and reverse reads into long contigs several

hundred bases long, as in Hohenlohe et al. (2013). This long contig-

assembly approach is only possible when using RADseq methods that

use mechanical shearing to generate fragments of variable length for

each RAD locus (i.e., Baird et al. 2008, Ali et al., 2016), and is not pos-

sible for double digest RAD (ddRAD, Peterson, Weber, Kay, Fisher, &

Hoekstra, 2012), Genotyping by Sequencing (GBS, Elshire et al.,

2011), or many other RADseq techniques (see Andrews et al., 2016).

However, some of these RADseq approaches may allow the assembly

of small contigs that can be used for primer development, if there is

considerable overlap between the forward and reverse sequence

reads (e.g., Jacobsen et al., 2017).

Another consideration when designing SNP assays is the number

of loci needed. Several empirical studies have evaluated the numbers

of SNPs required for parentage analysis, demonstrating that the min-

imum requirement varies across study systems (e.g., Holman et al.,

2017; Kaiser et al., 2017; Tokarska et al., 2009; Weinman et al.,

2015). One important factor influencing the minimum required loci is

the mating system; for example, mating systems with high
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proportions of close relatives, such as the Mexican gray wolf, should

require more loci for sufficient power to distinguish between puta-

tive parents that are close relatives. Another factor influencing the

number of required loci is the diversity of the loci; the more diverse

the loci, the higher the statistical power, and therefore, the fewer

loci are needed (Anderson & Garza, 2006; Morin et al., 2004). For

species and populations with high genetic diversity, it may be easier

to discover high-diversity SNPs and therefore easier to design a

smaller SNP panel with high statistical power. The thoroughness of

sampling of candidate parents is also important, as shown here by

the much lower accuracy of microsatellite parentage analysis for the

Mexican gray wolf data set that had many unsampled candidate par-

ents (i.e., comparing performance of the full vs. reduced data set).

Thus far, most studies evaluating the number of SNPs required for

parentage analysis have used data sets with few missing parents (but

see Trong, van Bers, Crooijmans, Dibbits, & Komen, 2013), and

therefore, our study provides a unique perspective on the perfor-

mance of SNPs when 23%–47% of putative parents are missing from

the data set. Finally, the amount of prior knowledge of parentage is

another important factor influencing the minimum loci needed. For

example, in many parentage studies the mothers of offspring are

known a priori, and incorporating that information into the parent-

age analysis will increase statistical power and decrease the number

of loci required (e.g., Kaiser et al., 2017; Weinman et al., 2015).

4.6 | Choosing markers for parentage analysis

We demonstrate here that RADseq is an effective tool for parentage

analysis, and provides greater power and accuracy than 14–22

microsatellites for our two study systems. The cost of supplies for

our RADseq analysis was approximately US$5.00 per sample for

library prep, and US$32.00 per sample for sequencing (about 80

samples per HiSeq lane). In contrast, the cost of supplies for our

microsatellite analysis was approximately US$8.00 per sample for

the multiplex PCR and fragment length analysis; this does not

include the cost of supplies for marker development and protocol

optimization. However, after the bioinformatic pipeline had been

optimized, RADseq laboratory and bioinformatic analysis were sub-

stantially less time-consuming than microsatellite genotyping. Fur-

thermore, RADseq analysis requires no extra time or expense for

locus discovery, as RADseq simultaneously discovers and genotypes

loci. However, for projects with large sample sizes, an approach of

using RADseq to identify a small panel of loci for SNP assay devel-

opment will likely be more cost-effective than using RADseq directly

for parentage analysis. RADseq typically generates data from many

more genetic markers than is necessary for parentage analysis, and

requires substantially more hard drive space and computational

power for analysis than microsatellites or SNP assays. In addition, if

very large sample sizes are used for RADseq studies, higher depth of

coverage (and therefore greater sequencing costs and hard drive

space) may be required than was used in this study to ensure that

sufficient numbers of loci pass the “per cent individuals genotyped”

filter. The laboratory cost of SNP genotyping assays varies widely

across approaches, but is generally comparable to the costs of RAD-

seq. The laboratory and bioinformatic analyses for SNP genotyping

assays are considerably less time-consuming than for microsatellites

or RADseq, and the genotypes generated using the same assay

method across laboratories should be highly comparable.

4.7 | Conclusions

Here, we describe a bioinformatic pipeline for identifying informative

RADseq SNP panels for parentage analysis with or without a refer-

ence genome, and test the performance of these panels for small pop-

ulations with high proportions of close relatives for two different

species. Our pipeline identified SNP panels with higher power and

accuracy for parentage analysis than 14–22 microsatellite loci for both

species. Subsets of 284 SNPs for Mexican gray wolf and 142 SNPs

for bighorn sheep provided parentage analysis results consistent with

results generated using more than >1,000 SNPs, indicating that RAD-

seq can be used to discover SNPs for designing time- and cost-effec-

tive assays to genotype small numbers of loci for large numbers of

samples. More RADseq SNPs were needed for parentage analysis of

Mexican gray wolf than bighorn sheep, likely due to lower diversity in

the Mexican gray wolf population resulting from a small founding

population size, as well as a mating system that results in a greater

proportion of close relatives. Our pipeline incorporates methods for

optimizing bioinformatic parameters to maximize genotyping accu-

racy, remove linked loci and select loci with high statistical power and

therefore can be used across a wide range of study systems.
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